
www.elsevier.com/locate/optcom

Optics Communications 259 (2006) 474–478
Effects of the frequency chirp on the fields of a chirped Gaussian
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Abstract

Based on the Huygens–Fresnel diffraction integral and Fourier transform, propagation expression of a chirped Gaussian pulse
passing through a hard-edged aperture is derived. Intensity distributions of the pulse with different frequency chirp in the near-field
and far-field are analyzed in detail by numerical calculations. In the near-field, amplitudes of the intensity peaks generated by the
modulation of the hard-edged aperture decrease with increasing the frequency chirp, which results in the improving of the beam uni-
formity. A physical explanation for the smoothing effect brought by increasing the frequency chirp is given. The smoothing effect is
achieved not only in the pulse with Gaussian transverse profile but also in the pulse with Hermite–Gaussian transverse profile when
the frequency chirp increases.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Hard-edged aperture is a general optical element in opti-
cal systems. When a laser pulse passes through a hard-
edged aperture, non-uniform intensity is generated, which
is a disadvantage for the applications of laser. In the iner-
tial confinement fusion, non-uniform intensity imprints it-
self on the target causing surface damage, which can
‘‘seed’’ the Rayleight–Taylor fluid instability, and enhances
the ignition energy [1,2]. In addition, self-focusing is gener-
ated because of the phenomenon [3], which may damage
the laser media and limit the laser outpower. Thus, ways
to improve the beam uniformity by smoothing the intensity
distributions of laser pulse has became an interesting topic
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and has been the subject of many investigations in the last
decades [4–17]. To achieve beam smoothing, some tech-
niques have been studied, such as using soft-edged aperture
[4], adopting multiple spatial filters [5], converting a coher-
ent wave to a random-phased wave [6], and using a lens ar-
ray [7]. In addition, the technique of smoothing by spectral
dispersion (SSD) of the laser pulse was developed [8]. Fol-
lowing the study, much work was undertaken to develop
this technique [9–16] and it evolved into three-dimensional
SSD [14]. The applications of the methods investigated in
the previous works are effective in improving the beam uni-
formity and they have been applied extensively, especially
the SSD [16].

Also, the beam uniformity can be improved by increasing
the bandwidth of the laser pulse [17]. When the broadband
laser pulse is adopted in the highpower laser system, the uni-
form illumination of the targets is improved in the high-
power laser driver, and some benefits such as eliminating
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the diffraction and the interference effects, weakening opti-
cal noise and decreasing the self-focusing are generated for
laser system itself. However, the laser pulse investigated in
[17] is transform-limited pulse and the increase of the band-
width is achieved by decreasing the pulse duration. Gener-
ally, the broadband laser pulse is generated by broadening
the femtosecond or piecosecond pulse to nanosecond pulse
in the high-power laser system, and thus the pulse takes big
frequency chirp, in which the chirp parameter reaches 103–
104 and even bigger. To know and utilize such big-fre-
quency chirped Gaussian pulse better, it is necessary to
study the properties of the pulse.

In the present paper, we have studied the effect of the
frequency chirp on the intensity distributions of the chirped
Gaussian pulse passing through a hard-edged aperture. In
Section 2, the propagation expression of a chirped Gauss-
ian pulse passing through a hard-edged aperture is derived
firstly. Then the time-integrated intensity distributions in
the pulse with Gaussian transverse profile in the near and
far fields are analyzed by numerical calculations in Section
3. In addition, we also investigated the smoothing effect in
the pulse with Hermite–Gaussian transverse profile in Sec-
tion 4. Finally, a brief summary of the results concludes the
paper in Section 5.

2. Fields of the chirped Gaussian pulse passing through a

hard-edged aperture

The scalar Fresnel–Kirchhoff diffraction integral is ob-
tained from the Helmholtz equation by using the Green�s
theorem and the Kirchhoff�s boundary conditions. When
the distance between the examined plane and the aperture
is greater than the half width of the aperture, the Fres-
nel–Kirchhoff diffraction integral is deduced to Huygens–
Fresnel diffraction integral [18,19]. Thus, when a laser pulse
passes through a hard-edged aperture, we obtain the field
in the frequency domain in terms of the Huygens–Fresnel
diffraction integral as

~Eðx; z;xÞ ¼ i

kz

� �1=2

expð�ikzÞ
Z a

�a

~Eðx0; 0;xÞ

� exp � ik
2z

ðx0 � xÞ2
� �

dx0; ð1Þ

where k = x/c is wave number, a is half width of the hard-
edged aperture, and

~Eðx0; 0;xÞ ¼
1

ð2pÞ1=2
Z 1

�1
Eðx0; 0; tÞ expð�ixtÞ dt ð2Þ

is field of the incident pulse in the frequency domain and
E(x0,0, t) is field of the incident pulse in the time domain.
Assuming the space and time field of the initial pulse can
be separated, thus E(x0,0, t) can be written as

Eðx0; 0; tÞ ¼ Eðx0; 0Þf ðtÞ; ð3Þ
where E(x0,0) is the spatial form of the pulse at z = 0 and
f(t) is the field distribution at x = z = 0 in time domain. It
should be pointed that we adopt the assumption in Eq. (3)
not because it is very realistic but to make easier our eval-
uations and qualitatively similar results would be obtained
with more sophisticated models. Thus, Eq. (2) can be
rewritten as

~Eðx0; 0;xÞ ¼ Eðx0; 0Þ~f ðxÞ; ð4Þ
where

~f ðxÞ ¼ 1

ð2pÞ1=2
Z 1

�1
f ðtÞ expð�ixtÞ dt. ð5Þ

Assume that temporal form of the pulse is a chirped Gauss-
ian shape whose field at z = 0 is in the form

f ðtÞ ¼ exp �a2g
t2

T 2
p

 !
exp½iðx0t � Ct2Þ�; ð6Þ

where ag = (2 ln2)1/2, Tp is pulse duration (full-width at
half-maximum, FWHM), x0 is the carrier frequency, C is
the chirp parameter, and the initial phase u is omitted.
By substituting Eq. (6) into Eq. (5), spectrum ~f ðxÞ at
z = 0 is expressed as

~f ðxÞ ¼
pT 2

p

a2gð1þ iCÞ

" #1=2
exp �

T 2
pðx� x0Þ2

4a2gð1þ iCÞ

" #
. ð7Þ

The field of any point behind the hard-edged aperture in
time domain is derived from inverse Fourier transform of
Eq. (1) as

Eðx; z; tÞ ¼ 1

ð2pÞ1=2
Z 1

�1
~Eðx; z;xÞ expðixtÞ dx. ð8Þ

In the highpower laser system, the time-integrated intensity
(energy density) of the laser pulse was paid more attention,
which is obtained as

I time-integratedðx; zÞ ¼
Z T p

�T p

jEðx; z; tÞj2 dt. ð9Þ
3. Effects of frequency chirp on the fields of the pulse with

Gaussian transverse profile

Consider that the spatial form of the pulse in Eq. (3) is
Gaussian transverse profile whose beam width is located at
the aperture plane, which is expressed as

Eðx0; 0Þ ¼ exp � x20
w2

0

� �
; ð10Þ

where w0 is the waist width of the Gaussian transverse pro-
file and the constant A0 is omitted.

The integral calculation of Eq. (1) yields

~E0ðx; z;xÞ ¼
izR

4ðzþ izRÞ

� �1=2
expð�ikzÞ exp � ikx2

2ðzþ izRÞ

� �
� ½erfðvþÞ þ erfðv�Þ�~f ðxÞ;

ð11Þ
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Fig. 1. Time-integrated intensity distributions in the pulse with Gaussian
transverse profile at z = 5 mm.
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where

vþ ¼ kðzþ izRÞ
2zzR

� �1=2
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� �
; ð12Þ
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and

erfðyÞ ¼ 2

p1=2

Z y

0

expð�x2Þ dx ð14Þ

is error function. Thus, the field distribution in time do-
main is given by

E0ðx; z; tÞ ¼
izR

8pðzþ izRÞ
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where

s0 ¼ s� x2

2cðzþ izRÞ
; ð16Þ

s = t � z/c is the local time. The time-integrated intensity
(energy density) of the beam is given by Eq. (9).

Using the above expressions, we analyzed the effects of
the frequency chirp on the fields of the pulse with Gauss-
ian transverse profile by numerical illustrations as fol-
lows. In fact, the effect of the frequency chirp on the
intensity is the effect of the spectrum broadened by the
frequency chirp. When the chirp parameter C is given
in the chirped Gaussian pulse, the width of the spectrum
is obtained as

Dx ¼
2a2gð1þ C2Þ1=2

T p

ð17Þ

and thus the bandwidth Dk is also obtained relatively. The
chirp parameters in the following calculations are
C = 100, 5000, and 10,000, and thus Dk are 0.2, 10, and
20 nm, relatively, where the calculation parameters are
k0 = 800 nm and Tp = 0.47 ns, and a = 1 mm additionally.
The time-integrated intensity distributions in the pulse
with Gaussian transverse profile at z = 5 mm are given
in Fig. 1. It can be seen that many intensity peaks are
generated because of the modulation of the aperture
and the amplitude of the intensity peaks in the pulse with
C = 100 is the greatest in the pulse with C = 100, 5000,
and 10,000. The amplitude of the peaks of the pulse with
C = 5000 and 10,000 decreases in the region near the z-
axis (x = 0) obviously and the intensity uniformity of
them are improved. Especially, the intensity uniformity
in the pulse with C = 10,000 is the best in them in the re-
gion. However, many peaks with great amplitude still ex-
ist at the edge of the intensity distributions and the
amplitudes have no significant changes. As pointed in
[4], they can be eliminated when soft aperture is adopted
in the optical systems.

The intensity studied in [8] was smoothed in time by
overlapping many copies of the pattern, each shifted in
space, so that peaks of some fill in the valleys of others
and the beam smoothing was achieved. However, the beam
smoothing brought by increasing the frequency chirp stud-
ied in this paper results from different extent of diffraction
of each frequency component physically. We know that the
diffraction patterns are determined by Fresnel number
F = a2/kz, and there exist different Fresnel numbers and
thus different diffraction pattern is generated for each fre-
quency component at a determined point. The different dif-
fraction patterns of the frequency components differ from
one another in spatial distribution and the intensity peaks
of some fill in the intensity valleys of others when the
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Fig. 2. Intensity distributions of waves of wavelengths 798 and 802 nm
with Gaussian transverse profile and the overlapped intensity distribution
of them at z = 5 mm. The solid line is the overlapped intensity distribu-
tion; the dashed line is the intensity distribution of wave with wavelength
798 nm; the dot line is the intensity distribution of wave with wavelength
802 nm.
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diffraction patterns of all frequency components are over-
lapped, so that the intensity is smoothed. Fig. 2 gives the
intensity distributions of waves of wavelengths 798 and
802 nm with Gaussian transverse profile and the over-
lapped intensity distribution of them at z = 5 mm. The
intensity peaks and the intensity valleys of the two waves
are staggered in the region depicted in the figure, so that
the peaks fill in the valleys, which results in the smoothing
of the overlapped intensity. The bigger the frequency chirp,
the larger the bandwidth and the more phenomenon
that the peaks fill in the valleys is generated, and thus the
better the smoothing effect is achieved.

The time-integrated intensity distributions in the pulse
with Gaussian transverse profile at z = 10 m are depicted
in Fig. 3, from which it can be seen that there is no any
intensity peaks are generated in the intensity distributions
in the far field. In the transform-limited pulse, the radius
of time-integrated intensity distributions tends to decrease
with increasing the frequency chirp in the far field [17].
However, the tendency is also exist but unnoticeable in
the chirped Gaussian pulse, and the time-integrated inten-
sity distributions in the pulse with different frequency chirp
seems to be the same.
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Fig. 3. Time-integrated intensity distributions in the pulse with Gaussian
transverse profile at z = 10 m.
4. Effects of frequency chirp on the fields of the pulse with

Hermite–Gaussian transverse profile

Consider that the spatial form of the pulse in Eq. (3) is a
higher-order Gaussian transverse profile whose beam width
is also located at the aperture plane. In rectangular coordi-
nates, the higher-order Gaussian transverse profile is in the
form of Hermite–Gaussian transverse profile, which is ex-
pressed as

Emðx0; 0Þ ¼ Hm

ffiffiffi
2

p x0
w0

� �
exp � x20

w2
0

� �
; ð18Þ

where Hm() is Hermite polynomial functions and m is mode
index. When m = 0, Eq. (18) reduces to Eq. (10). When
m = 1, the integral calculation of Eq. (8) yields
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and m = 2, yields
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For other pulses with Hermite–Gaussian transverse profile
with higher-order modes, the field expressions can be de-
rived by means of recurrence equations of Hermite polyno-
mials [20,21]. Also, the time-integrated intensity is given by
Eq. (9).

Taking the pulse with Hermite–Gaussian transverse pro-
file with m = 1 as an example, we studied the effect of the
frequency chirp on the time-integrated intensity in the
chirped Gaussian pulse with Hermite–Gaussian transverse
profile passing through the hard-edged aperture. Fig. 4
gives the time-integrated intensity in the pulse with Her-
mite–Gaussian transverse profile with m = 1 at z = 5 mm.
It can be seen from the figure that the time-integrated
intensity in the pulse on the z-axis is still zero, as well as
the continuous wave in the free space [20]. Also, the ampli-
tude of the intensity peaks decreases and the time-inte-
grated intensity in the pulse tends to be smoothed when
the frequency chirp increases. Thus, the beam uniformity
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Fig. 4. Time-integrated intensity distributions in the pulse with Hermite–
Gaussian transverse profile with m = 1 at z = 5 mm.
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is improved by increasing the frequency chirp in the pulse
with Hermite–Gaussian transverse profile as well.

5. Conclusions

Effect of the frequency chirp on the time-integrated
intensity distributions of the chirped Gaussian pulse pass-
ing through a hard-edged aperture is analyzed in detail.
Increasing the frequency chirp in the chirped Gaussian
pulse results in increasing the bandwidth of the pulse,
which brings a benefit of improving the time-integrated
intensity uniformity in the practical applications. The ben-
efit is caused by that the different diffraction patterns are
generated because of different extent of diffraction of each
frequency component and the intensity peaks of some fill in
the intensity valleys of others when the diffraction patterns
of all frequency components are overlapped, so that the
intensity is smoothed. The results show that the beam
smoothing is achieved both in the pulse with Gaussian
transverse profile and that with Hermite–Gaussian trans-
verse profile by increasing the frequency chirp.

The bandwidth of the laser pulse already reaches 20 nm
in the design of high-power laser driver at present. The
beam smoothing is achieved to a certain degree in the pulse
with bandwidth 20 nm, but the smoothing effect is not
good enough in the laser applications. Due to limitation
of some factors, it is very difficult to increase the bandwidth
in such high-power laser system further. To obtain more
uniform intensity in high-power laser system, it is necessary
to combine the other method with the broadband laser
pulse. For example, when a dispersive wedge is adopted
in the broadband laser pulse, the different diffraction pat-
terns generated by the frequency components will stagger
an appropriate distance, which is of more advantage to
the fill of the intensity peaks in the intensity valleys, so that
better smoothing effect is achieved. It is a subject worthy of
study.
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